## Using and Inspecting Datasets ### Dataset registry You can retrieve dataset paths from the [dataset registry](https://github.com/robocasa/robocasa/blob/main/robocasa/utils/dataset_registry.py) as follows: ```py from robocasa.utils.dataset_registry import SINGLE_STAGE_TASK_DATASETS, MULTI_STAGE_TASK_DATASETS from robocasa.utils.dataset_registry import get_ds_path # iterate through all atomic and composite tasks for task in list(SINGLE_STAGE_TASK_DATASETS) + list(MULTI_STAGE_TASK_DATASETS): print(f"Datasets for {task}") human_path, ds_meta = get_ds_path(task=task, ds_type="human_im", return_info=True) # human dataset path horizon = ds_meta["horizon"] # get suggested for dataset mg_path, ds_meta = get_ds_path(task=task, ds_type="mg_im", return_info=True) # MimicGen dataset path print(f"Human ds: {human_path}") print(f"MimicGen ds: {mg_path}") print(f"Dataset horizon:", horizon) print() ``` ### Basic usage Here is an example script to access dataset elements: ```py import h5py import json f = h5py.File(INSERT_DATASET_PATH) demo = f["data"]["demo_5"] # access demo 5 obs = demo["obs"] # obervations across all timesteps left_img = obs["robot0_agentview_left_image"][:] # get left camera images in numpy format ep_meta = json.loads(demo.attrs["ep_meta"]) # get meta data for episode lang = ep_meta["lang"] # get language instruction for episode f.close() ``` ### Inspecting and visualizing datasets To get dataset meta data (filter keys, env args) and statistics (object, task language, scenes): ``` python robocasa/scripts/get_dataset_info.py --dataset ``` To visualize a dataset and save a video: ``` python robocasa/scripts/playback_dataset.py --n 10 --dataset ``` This will save a video of 10 random demonstrations in the same path as the dataset. You can play the full dataset by removing the `--n` flag. ### Dataset structure RoboCasa datasets follow the convention of robomimic `.hdf5` files. Here is an overview of important elements of each dataset: `|__data`: env meta data and all demos
` |__env_args` (attribute): meta data infromation about the dataset task
` |__demo_`: data for demo n
` |__model_file` (attribute): the xml string corresponding to the MJCF MuJoCo model
` |__ep_meta` (attribute): episode meta data (task langage, scene info, object info, etc)
` |__actions`: environment actions, ordered by time. Shape (N, A) where N is the
` `length of the trajectory, and A is the action space dimension
` |__action_dict`: dictionary that splits actions by fine-grained components,
` `eg. position, rotation, gripper, etc
` |__obs`: dictionary of observation keys, including images, proprioception, etc.
` |__states`: flattened raw low-level MuJoCo states, ordered by time. Used to replay demos
` `Not to be used for policy learning!
`|__mask`: contains filter key meta data to split the dataset in different ways